6,137 research outputs found

    Dependence of Galaxy Shape on Environment in the Sloan Digital Sky Survey

    Full text link
    Using a sample of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 4, we study the trends relating surface brightness profile type and apparent axis ratio to the local galaxy environment. We use the SDSS parameter `fracDeV' to quantify the profile type. We find that galaxies with M_r > -18 are mostly described by exponential profiles in all environments. Galaxies with -21 < M_r < -18 mainly have exponential profiles in low density environments and de Vaucouleurs profiles in high density environments. The most luminous galaxies, with M_r < -21, are mostly described by de Vaucouleurs profiles in all environments. For galaxies with M_r < -19, the fraction of de Vaucouleurs galaxies is a monotonically increasing function of local density, while the fraction of exponential galaxies is monotonically decreasing. For a fixed surface brightness profile type, apparent axis ratio is frequently correlated with environment. As the local density of galaxies increases, we find that for -20 < M_r < -18, galaxies of all profile types become slightly rounder, on average; for -22 < M_r < -20, galaxies with exponential profiles tend to become flatter, while galaxies with de Vaucouleurs profiles become rounder; for M_r < -22, galaxies with exponential profiles become flatter, while the de Vaucouleurs galaxies become rounder in their inner regions, yet exhibit no change in their outer regions. We comment on how the observed trends relate to the merger history of galaxies.Comment: 23 pages, 7 figures, accepted by Ap

    The Nature of the H2-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 emission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51's ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab's synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised Figure 12 results unchange

    Singularity in the boundary resistance between superfluid 4^4He and a solid surface

    Full text link
    We report new measurements in four cells of the thermal boundary resistance RR between copper and 4^4He below but near the superfluid-transition temperature TλT_\lambda. For 107t1T/Tλ10410^{-7} \leq t \equiv 1 - T/T_\lambda \leq 10^{-4} fits of R=R0txb+B0R = R_0 t^{x_b} + B_0 to the data yielded xb0.18x_b \simeq 0.18, whereas a fit to theoretical values based on the renormalization-group theory yielded xb=0.23x_b = 0.23. Alternatively, a good fit of the theory to the data could be obtained if the {\it amplitude} of the prediction was reduced by a factor close to two. The results raise the question whether the boundary conditions used in the theory should be modified.Comment: 4 pages, 4 figures, revte

    Preparative-scale enzymic synthesis of d-[14C]ribulose 1,5-bisphosphate

    Full text link

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K \lesssim Teff_{\rm{eff}} \lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} \gtrsim 1500 K and/or low surface gravity (\lesssim 103^3 cm s2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    Get PDF
    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results.Comment: 22 pages, 3 tables, 5 figures, accepted for publication in Ap

    Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Get PDF
    The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS) is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from &amp;minus;4.3 to 0.5&amp;plusmn;1.2&amp;ndash;3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6&amp;ndash;3.0&amp;plusmn;1.2&amp;ndash;3.6 km (&amp;minus;5.8 to &amp;minus;0.2&amp;plusmn;0.5&amp;ndash;2.7 km) for clouds &amp;ge;7 km (&amp;lt;7 km). The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed

    Disciplining Skepticism Through Kant’s Critique, Fichte’s Idealism, and Hegel’s Negations

    Get PDF
    This chapter considers the encounter of skepticism with the Kantian and post-Kantian philosophical enterprise and focuses on the intriguing feature whereby it is assimilated into this enterprise. In this period, skepticism becomes interchangeable with its other, which helps understand the proliferation of many kinds of views under its name and which forms the background for transforming skepticism into an anonymous, routine practice of raising objections and counter-objections to one’s own view. German philosophers of this era counterpose skepticism to dogmatism and criticism, ancient to modern skepticism, and, importantly, conceptualize the transitions from one form to another, which forms the conceptual matrix in which new disciplinary forms, such as psychology, anthropology, and historicism contend for cultural-intellectual standing beside philosophy. I present this assimilationist trajectory by reviewing three well-known moments of this encounter of skepticism and idealism: (1) Kant’s idealization of skepticism as a floating position amidst various philosophical positions through the dialectic, polemics, systematics, and history of pure reason; (2) Fichte’s schematic conception of skepticism as a dispute of systems in the early Wissenschaftslehre following his review of the skeptic G. E. Schulze’s attacks on Critical philosophy; (3) Hegel’s historicizing conception of skepticism in the context of differences between subjective idealism and speculative thought and his early Jena review of another work by the same skeptic Schulze

    NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region

    Get PDF
    We describe results from a new ground-based monitoring campaign on NGC 5548, the best studied reverberation-mapped AGN. We find that it was in the lowest luminosity state yet recorded during a monitoring program, namely L(5100) = 4.7 x 10^42 ergs s^-1. We determine a rest-frame time lag between flux variations in the continuum and the Hbeta line of 6.3 (+2.6/-2.3) days. Combining our measurements with those of previous campaigns, we determine a weighted black hole mass of M_BH = 6.54 (+0.26/-0.25) x 10^7 M_sun based on all broad emission lines with suitable variability data. We confirm the previously-discovered virial relationship between the time lag of emission lines relative to the continuum and the width of the emission lines in NGC 5548, which is the expected signature of a gravity-dominated broad-line region. Using this lowest luminosity state, we extend the range of the relationship between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population of reverberation-mapped AGNs as a whole.Comment: 24 pages, 3 tables, 7 figures, accepted for publication in Ap
    corecore